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1 Executive summary 
1.1 Goal 

This project aimed to assist in defining the specifications for future disease 
surveys by evaluating a range of sampling strategies through simulation to 
estimate the probabilities of detection they provide under a range of 
assumptions regarding incidence and spatial distribution of the unwanted 
organism, using plum pox potyvirus and brown rot caused by Monilinia 
fructigena as models of diseases where significant aggregation is observed. 

1.2 Context of the project 
The MAF National Plant Pest Reference Laboratory (NPPRL) has been 
active in carrying out studies to design and estimate the costs of surveillance 
schemes for high-impact exotic plant pest species (Ganev & Braithewaite 
2003, Stephenson et al. 2003).  Fundamental research has shown that the 
pest or disease incidence may be described using different models (e.g. the 
binomial, hypergeometric , beta-binomial or negative binomial distributions), 
depending in particular on the degree of aggregation of the affected plants 
(Madden & Hughes 1999).  Plum pox potyvirus and brown rot caused by 
Monilinia fructigena would be devastating to the stone and pome fruit 
industries, respectively, if they were introduced into New Zealand and 
became established.  These were chosen as trial organisms for testing 
various sampling schemes for their statistical power to detect incursions 
when disease incidence, detection efficacy and detection probabilities were 
varied. 

1.3 Approach 
The possible behaviour of plum pox potyvirus and brown rot (M. fructigena) in 
the event of an incursion in New Zealand was characterised by surveying the 
published literature.  The symptoms, host range, strains, transmission, 
epidemiology and diagnosis of these organisms were summarised to ensure 
that disease models to be developed, simulated epidemics, and estimates of 
detection costs reflected existing knowledge.   

Existing equations to describe disease distributions do not consider both 
aggregation and orchard size, or spatial layout, or spatial distribution of 
disease other than the extent of aggregation.  Therefore, disease epidemics 
were simulated for a range of parameters including disease incidence (from 
one tree/orchard to 10%), different pathogen dispersal (using four wind 
conditions), and different orchard shapes and sizes (square versus long, < 50 
trees to 10 ha).  Each simulation was run 1000 times.  Calculation of index of 
dispersion and the beta-binomial aggregation statistic (θ) showed that the
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extent of disease aggregation in the simulated orchards was appropriate for 
these two diseases.  In addition, six sampling schemes were devised that 
either randomly sampled a fixed number of trees (50, 60 or 500) or sampled 
trees in regular patterns, sampling one in four or one in 16 trees, either as 
individuals or in quadrats.  The statistical power of the different sampling 
schemes to detect an infected orchard was determined by sampling the 
simulated orchards.  The ability of the different sampling schemes to estimate 
disease incidence was also examined.  Resources required to detect and 
diagnose disease incursions were then estimated using the sampling 
schemes that were the most powerful for the combination of three disease 
incidences (one tree/orchard, 0.5% and 5%) and all the various orchard 
sizes.  

1.4 Outcomes 
For detection of relatively high disease incidence (5% or greater), we showed 
that the effect of aggregation (θ=0.09) on the power to detect an infected 
orchard is only slightly reduced (dropping from 90% to 88%) using the 
sampling scheme described by Richmond et al. (1998) where relatively few 
trees (n=50) are randomly selected.  By sampling 60 trees, the confidence of 
detection would increase to 90%.  Therefore, even in the presence of a 
significant but low level of disease aggregation, the approach of Richmond et 
al. (1998) will detect a high percentage of infected orchards with 5% or 
greater disease incidence.  The overseas literature on recent plum pox 
potyvirus outbreaks indicates that orchards with disease incidence as high as 
10% occur by the time the disease has been detected (Hughes et al. 2002), 
therefore this level of sampling (n=50) may be appropriate for many diseases 
(where this degree of aggregation or less is observed) for conducting 
surveillance to determine whether an incursion has occured. 

However, to delimit the extent of a disease incursion or to ensure disease 
eradication, reliable detection of infected orchards with much lower disease 
incidences is required.  The effect of disease aggregation is to increase the 
number of trees that must be selected to maintain a given confidence of 
detection.  For example, if the distribution of trees fits the binomial distribution 
(i.e. they are randomly distributed), then 511 trees are required to detect an 
orchard with 0.5% incidence with a 90% confidence of detection and 90% 
detection efficacy.  If modest aggregation is present (θ = 0.09) then 600 trees 
must be selected to meet the same detection parameters.   

To detect infected orchards with aggregated disease at various disease 
incidences, and at various orchard sizes, the most effective sampling 
strategies were still those that selected the largest proportion of trees in an 
orchard.  Consequently, for small orchards, strategies that selected a fixed 
number of trees (50, 60 or 500) were most effective, while for large orchards 
the sampling strategies that selected the largest proportion of trees were 
most effective.  In the presence of disease aggregation, the sampling scheme 
that selected one in four trees in quadrats was marginally more effective than 
a sampling scheme that sampled the same proportion of trees as single 
trees.  In the case where the disease incidence was only one tree/orchard 
and the orchards were large, the best sampling schemes (selecting one in 
four trees) would at the best identify 25% of infected orchards. 
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Using the statistically most powerful sampling schemes for each orchard size, 
the costs of surveying for plum pox potyvirus by visual observation, ELISA 
and IC-PCR (immunocapture-PCR) were estimated; and the costs of 
surveying for brown rot (M. fructigena) of pome fruits by visual observation 
were estimated.  For example, sampling one 10 ha orchard to detect a 0.5% 
disease incidence of plum pox potyvirus with a probability of detection 
nearing 100% of infected orchards requires 86 hours of surveying, either 5.5 
days (ELISA, based on 300 tests/day) or 13.8 days (IC-PCR, based on 120 
tests/day) of laboratory diagnostics, and either approximately $2500 or $5000 
in consumable reagents.   

1.5 Summary 
This project aimed to evaluate sampling methods through simulation to 
estimate the probabilities of detecting either plum pox potyvirus or brown rot 
caused by M. fructigena under a range of assumptions regarding incidence 
and spatial distribution of the unwanted organism in order to assist in defining 
the specifications for future disease surveys.   

Following literature surveys to identify key characteristics of the pathogens 
and their epidemics, diseased orchards with the relevant spatial distributions 
were generated by simulation.  In particular, the aim was to achieve a mean 
aggregation of disease consistent with the aggregation that has been 
observed in overseas studies.  Existing equations to describe disease 
distributions do not consider both aggregation and orchard size, or spatial 
layout, or spatial distribution of disease other than the extent of aggregation.  
Therefore, diseased orchards were simulated for a range of parameters 
including disease incidence (from one tree/orchard to 10%), different 
pathogen dispersal (using four wind conditions), and different orchard shapes 
and sizes (square versus long, < 50 trees to 10 ha).  The power of different 
sampling schemes to detect infected orchards was determined by sampling 
the simulated orchards.   

The most appropriate sampling schemes to detect infected orchards with 
aggregated disease at various disease incidences, and at various orchard 
sizes, were summarised.  The most effective sampling strategies are still 
those that select the largest proportion of trees in an orchard, therefore 
different sampling schemes are appropriate for small and large orchards.  
Using the statistically most powerful sampling schemes for each orchard size, 
estimates were presented of the costs of surveying for plum pox potyvirus by 
visual observation, ELISA and IC-PCR (immunocapture-PCR) and of the 
costs of surveying for brown rot (M. fructigena) of pome fruits by visual 
observation.   
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2 Introduction: aims and background 
2.1 Plum pox virus and brown rot characterisation 

2.1.1 Plum pox potyvirus 
Plum pox potyvirus (PPV) causes arguably the most significant disease of 
stone fruit – plum pox disease, also called Sharka disease.  The disease was 
first reported in Eastern Europe and has spread to many stone fruit growing 
regions of the world including Europe, the Mediterranean and Middle East, 
India, and recently to Chile.  An outbreak of PPV was recently discovered in 
the eastern USA (Levy et al. 2000b) and adjacent regions of  Canada 
(Thompson et al. 2001).  New Zealand, Australia and parts of the USA and 
Canada are free from plum pox disease.   

 Symptoms.  Symptoms of PPV can appear on fruit, flowers and leaves.  
Symptoms develop slowly after infection, and may not appear until 2-3 
months after aphid inoculation of indicator Prunus plants (Quiot et al. 
1995).  Critically, PPV infection is often characterised by a long latent 
period (1 or more years) during which no symptoms are apparent.  In 
addition, symptoms show irregular distribution within plants, and may be 
limited to a single quadrant of a tree, or may appear only on basal or 
middle sections of growing shoots.  The symptoms observed on leaves 
can include chlorotic rings and bands, vein clearing and general mottling.  
In some plum cultivars, leaf symptoms can progress to "necrotic shothole 
symptoms" (Gottwald et al. 1995).  Symptoms on leaves are most easily 
observed in spring, and the leaves showing symptoms are most often 
associated with rapidly growing shoots (Bodin Ferri et al. 2002).  Bodin 
Ferri at al. (2002) also suggested that the pattern of appearance of 
symptoms reflects a high virus titre in the growing shoot tissue.  The 
appearance and severity of symptoms, and the effect of infection on 
plant growth, can differ markedly according to viral strain, cultivar and 
Prunus species (cited in Bodin Ferri et al. 2002).  On fruit, symptoms can 
vary from moderate to severe, and might include the appearance of 
chlorotic rings with deformations, depressions in the fruit surface, and 
corky flesh.  The result of PPV infection can be severely decreased 
market quality of fruit and for New Zealand would doubtless threaten 
access to export markets. 

 Host range.  The host range for PPV is Prunus spp, including peach, 
plum, nectarine, and apricots.  Almonds can be infected experimentally 
by grafting, and cherries can be infected by recently discovered cherry 
strains of PPV.  PPV also infects other genera in plant families including 
at least Pisum, Melilotus, Campanula and Lamium (Levy et al. 2000a).  
PPV can be propagated in herbaceous hosts such as Nicotiana spp, 
Pisum sativum and Chenopodium foetidum. 

 Viral strains.  Isolates of PPV can be grouped into 4 strains, PPV-D, 
PPV-M, PPV-EA, and PPV-C.  PPV-D and PPV-M are the predominant 
strain groupings but have different patterns of distribution in stone fruit 
orchards. PPV-D is more often found in apricots and plums, while PPV-M 
is more often found on peaches (Quiot et al. 1995; Dallot et al. 2001).  
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PPV-M is considered to be faster spreading and more able to establish 
systemic infections than the D isolate.  The EA (El-Amar) isolate was 
detected on apricot (Wetzel et al. 1991a), and the C isolates are adapted 
to sweet and sour cherries (Nemchinov & Hadidi 1996).  Characterisation 
of viral strains, including sequence analysis of PPV genomic RNA 
sequences, has confirmed the existence of recombinant strains with 
intermediate properties (Revers et al. 1996; Glasa et al. 2002).  In the 
event of a PPV incursion in New Zealand, it will be important to identify 
the isolate so that its epidemiological behaviour might be predicted.  
However, Dallot et al. (1998) identified a PPV-D isolate that produced 
disease epidemics on peach trees. 

 Transmission.  PPV is spread by graft transmission and by aphids.  As is 
the case with other aphid-transmissible members of the potyvirus group, 
PPV is transmitted non-persistently by aphids.  Therefore, aphids are 
only able to spread the virus for a short time after acquisition, usually 
less than 1 hour (Levy et al. 2000a).  In experiments, more than 20 
species of aphids have been shown to transmit PPV, although only about 
six species are considered to be important vectors of the disease (Levy 
et al. 2000a).  Aphids can acquire virus from infected leaves and fruit at 
all stages, including from over-ripe fruits that might be found on fruit 
dumps (Labonne & Quiot 2001).  PPV can be mechanically transmitted 
to some herbaceous hosts (e.g. Pisum sativum; Quiot et al. 1995) or 
from a herbaceous host (Nicotiana benthemianum) to Prunus (Dallot et 
al. 2001).  Maintenance of the virus in herbaceous hosts may reduce its 
infectivity (Dallot et al. 2001).  Whether PPV is seed transmissible or not 
is contentious.  Early publications report seed transmission of PPV, while 
more recent publications show that PPV is detectable by ELISA and/or 
IC-PCR in seed coats and cotyledons, but not in seedlings from infected 
seeds (Pasquini et al. 2000, and discussion therein). 

 Epidemiology.  The spatial spread of plum pox potyvirus in Prunus 
orchards has been analysed and results are characterised by two papers 
(Gottwald et al. 1995; Dallot et al. 2003).  Gottwald et al. (1995) 
examined PPV spread in peach and apricot orchards over 4 years.  
Infected trees were determined using double antibody sandwich-ELISA.  
The strain (D or M) of plum pox potyvirus present in these orchards was 
not specified.  These authors found that the orientation of the localised 
systemic infections found in particular scaffold branches was conserved 
over years, confirming results from other studies on uneven distribution 
of the virus in infected trees.  In the orchards included in this study, 
disease incidence ranged from 5% to 95%.  At lower disease incidences, 
significant clustering of the disease was not observed (based on the 
index of dispersion statistic from the beta-binomial distribution).  At 
higher disease incidences, evidence of clustering was observed using 
this statistic.  The spatial pattern of plum pox potyvirus spread found in 
the orchards suggested to these authors that movement of aphid vectors 
was preferentially to trees several spaces away rather than to adjacent 
trees.  In a study carried out in peach orchards in southern France, Dallot 
et al. (2003) examined the spread of the aggressive M strain.  In this 
research, infected trees were determined by observation of visual 
symptoms by trained teams, with the use of field-based immunoprinting 
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to confirm scorings.  Trees determined to be PPV infected were removed 
and destroyed each year, as is required in France for the M strain.  The 
disease incidences observed in 18 orchards ranged from 1.9% to 35% of 
trees.  Using two measures of aggregation, the beta-binomial parameter 
θ and the dispersion index D, these authors also found significant 
aggregation of disease, particularly at higher disease incidences.  Using 
SADIE (spatial analysis by distance indices, 
www.rothamsted.bbsrc.ac.uk/pie/sadie), a different measure of 
aggregation, the authors of this study also found evidence for higher 
order aggregation, i.e. that non-adjacent clusters of diseased trees could 
be related.  After examining the aggregation patterns in these orchards, 
Dallot et al. (2003) concluded that aphid transmission of virus to 
neighbouring trees was not systematic.   

 Diagnosis.  Plum pox virus is the only potyvirus that infects Prunus spp., 
therefore detection methods do not need to distinguish PPV from other 
related pathogens.  Accurate diagnosis of PPV-infected trees is 
hampered by latency as well as by the uneven distribution and low 
concentration of the virus in infected trees (Quiot et al. 1995; Bodin et al. 
2003).  Tests to diagnose PPV infection of host plants include biological 
indexing, serological testing using ELISA-based methods, and molecular 
diagnosis using RT-PCR (reverse transcription-PCR)-based methods.  
The European Plant Protection Organisation (EPPO) has published an 
approved Standard for PPV diagnosis that incorporates all three methods 
(EPPO 2004).  References to research underlying PPV diagnosis are 
included therein.   

Elsewhere in the literature, data are presented regarding the relative 
efficiency and sensitivity of ELISA and RT-PCR methods (Adams et al. 
1999), or of ELISA methods alone (Hughes et al. 2002).  Adams et al. 
(1999) conclude that immunocapture-PCR (IC-PCR) is about 1000X 
more sensitive than ELISA.  They also show that with ELISA the 
proportion of positive ELISAs after assaying a single leaf from an 
infected shoot ranged from 37-97%, but that this increased to 74-100% 
after taking three samples per shoot (one basal, one middle, one apical).  
Adams et al. (1999) advised against pooling samples being analysed by 
ELISA because of difficulties in obtaining significant absorbance values. 
Adams et al. (1999) also examined detection of PPV in dormant trees by 
sampling bark or roots.  Bark samples gave a positive result (either by 
ELISA (22/32), or IC-PCR (25/32)) where sampling the leaves on the 
same stem had given negative results by either method.  Root samples 
were also shown to be valuable for detecting PPV infection in dormant 
trees.  Testing of bark or root samples might be particularly valuable if 
nursery stock need to be examined for PPV infection. 

2.1.2 Brown rot (Monilinia fructigena) 
Apple brown rot is caused by Monilinia fructigena Honey.  The host range of 
M. fructigena is fruit trees in the Rosaceae, but it is most characteristically 
found on apples and pears.  Other species of Monilinia that cause brown rot 
of fruit are M. laxa and M. fructicola.  M. fructigena is considered to be an 
“Old World” pathogen, and is prevalent in Europe and Asia.  Japanese 
isolates of M. fructigena are considerably different from to European isolates, 
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and so it has been proposed that Japanese isolates constitute a fourth 
species, M. polystroma van Leeuwen (van Leeuwen et al. 2002).  M. 
fructigena does not occur in New Zealand, but M. fructicola and M. laxa are 
present here.  M. fructigena is a quarantine pest in New Zealand, Australia 
and the USA. 

 Symptoms.  Symptoms of M. fructigena infection include blossom blight, 
twig and branch cankers, and brown rot of fruit.  Twig cankers are often 
small and difficult to detect, but cankers can girdle branches and cause 
distal portions of branches to collapse.  Brown rot of fruit is most often 
associated with wound sites or with areas where fruit touch.  Brown rot 
begins as a small firm brown lesion and rapidly expands to encompass 
the entire fruit.  M. fructigena rots are firm and dry to the touch, and do 
not squash easily.  Conidia appear on the surface of the brown rot lesion. 

 Life cycle and transmission.  New infections in the spring are established 
from conidia that have over-wintered on mummified fruit and twig and 
branch cankers.  Conidia develop in early spring on blighted blossoms, 
infected branches and twigs, and on mummified fruit.  Spore germination 
and establishment of infection is stimulated by wet conditions and warm 
temperatures.  Wind and rain disseminate spores, and it is also likely that 
wounding agents such as insects or birds also transmit spores.  The 
injuries that facilitate development of M. fructigena rot may have abiotic 
causes (hail, wind, rubbing, cracking due to sunburn) or biotic causes 
(birds, insects, apple scab).  Except in the case of fruit touching, M 
fructigena does not infect uninjured fruit.  In addition to being associated 
with wounding, disease development in orchards is gradual and 
increases markedly as fruit begins to mature (Xu & Robinson 2000; Xu et 
al. 2001).  M. fructigena can also cause rots during storage, but 
infections will have been established before harvest, and will spread as a 
result of fruit touching or additional wounding during handling.  
Transmission between orchards or internationally is likely occur via 
infected cuttings or nursery stock, or via infected fruit.  Transmission on 
infected fruit in commercial shipments may be less important because 
wounded fruit or fruit showing rot is removed during grading and packing. 

 Diagnosis.  Identification of M. fructigena on rotting pome fruit will first 
involve biological characterisation by culturing the fungus, followed by 
application of a diagnostic PCR assay that is capable of distinguishing M. 
fructigena from M. fructicola and M. laxa.  Cultural and morphological 
characteristics for these three species show quantitative variation, with 
overlap, so are not completely adequate for species diagnosis.  In 
particular, M. fructigena may be misidentified as M. fructicola (van 
Leeuwen & van Kesteren 1998).  Several PCR-based diagnosis methods 
have been developed for identifying M. fructicola, and two methods in 
particular (Hughes et al. 2000; Ioos & Frey 2000) are recommended for 
distinguishing M. fructicola from M. fructigena and M. laxa (EPPO 2003).  
These PCR methods produce a positive amplification for M. fructicola, 
but no bands are amplified from M. fructigena or M. laxa.  The European 
Standard focuses on detecting M. fructicola since it is a regulated pest in 
Europe.  More recently, Côté et al. (2004) have published a multiplex 
PCR method that produces bands of unique length for each of the three 
species plus M. polystroma.  PCR amplifications are carried out using a 
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common reverse primer and three species-specific forward primers.  All 
the PCR-based diagnostic methods stress the importance of using a 
positive control PCR assay, such as one based on amplification of ITS 
sequences (Hughes et al. 2000; EPPO 2003), especially to ensure that 
negative PCR amplification results are not due to template preparations 
being unsuitable for PCR.   

 Epidemiology.  Only a few studies have examined the epidemiology of M. 
fructigena.  Xu & Robinson (2000) studied the factors leading to fruit 
infection, in particular the effects of wounding, wound age and fruit 
maturity.  Their key findings were that unwounded fruit do not get M. 
fructigena rot, wound age affects the success of infection (recent wounds 
become infected more readily than old wounds), fruit maturity affects the 
incidence of rots (mature fruit are more susceptible), and the length of 
the incubation period after inoculation with conidia depends on wound 
age and temperature.  The spatio-temporal dynamics of M. fructigena 
disease development were examined in two papers (van Leeuwen et al. 
2000; Xu et al. 2001).  van Leeuwin et al. (2000) found that disease 
incidence increased relatively constantly throughout the growing season.  
Clustering of diseased fruits was observed and infected trees tended to 
contain a greater number of infected fruits than would be expected at 
random.  Infected trees were also clustered.  The patterns of between-
tree clustering were different in the 2 years of the study.  In the first year, 
positive correlation coefficients for clustering were found for trees that 
were two, three or four trees down the row.  In the second year, however, 
adjacent trees showed the most significant clustering. Xu et al. (2001) 
also found clustering of diseased fruit.  In particular, aggregation was 
clearly observed for primary-rotted fruit where the disease incidence was 
above 0.5%, meaning that significantly more trees had no rotten fruits 
than would be expected from a binomial distribution.  Using the beta-
binomial distribution, estimates of θ also indicated aggregation, 
particularly as disease incidence increased. Xu et al. (2001) concluded 
that the spatial characteristics of brown rot were probably determined 
more by the activities of the wounding agents than by dispersal 
characteristics of conidia.  They reasoned that wound is essential for rot 
to develop.  They also contended that dispersal of conidia by rain-splash 
may be important because infected fruits were observed to be 
consistently and significantly aggregated within trees compared with 
between trees. 



Page 9  

3 Simulation of disease epidemics 
3.1 Calculating the number of trees to sample 

3.1.1 MAF sampling scheme  
With the MAF sampling scheme described by Richmond et al. (1998), the 
number of samples to collect (n) is calculated from: 

p3, the confidence of detecting a pest =  0.9 (90%) 

p4, the proportion of plants infested = 0.05 (5%) 

p5, the efficacy of detecting an infected host = 0.9 (90%) 

More recently, Ganev & Braithwaite (2003) have calculated n from p3 = 0.95 
(95% confidence), p4 = 0.05 (5% incidence) and p5 = 0.45 (45% detection 
efficiency). 

These sets of parameters are used in the following equation, which assumes 
infected individuals follow a binomial distribution, that is, that they are not 
aggregated, and the probability of one tree being infected has no bearing on 
whether an adjacent tree will be infected. In addition, it effectively assumes 
an infinite (or very large) orchard size, and takes no account of the spatial 
distribution of the trees. 

 
−

=
−

3

4 5

ln(1 p )
n

ln(1 p p )
 

With the above values for p3, p4 and p5, this gives n = 50 and n = 132, 
respectively. These are the numbers of tests or observations to take from an 
orchard in order to have a 90% chance (Richmond et al. 1998) or a 95% 
chance (Ganev & Braithwaite 2003) of getting at least one infected tree if 
there are 5% or more of trees infected in the orchard. If the infection rate (p4) 
is lower than 5%, then the chance of getting at least one infected tree in the 
sample will be below 90% or  95%.  This is explored below. 

In general, sample size calculations are done with the assumption that the 
orchard contains an infinite number of trees. For the very largest orchards, 
this assumption is reasonable, but clearly, this is not so for the smaller 
orchards. Where there is no aggregation (the assumption for the current 
scheme) there are alternative calculations that do take account of orchard 
size (using the hypergeometric distribution, e.g. see Venette et al. (2002)):   
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When p5, the efficacy of detecting an infected host, is less than 1, there is no 
direct modification of this equation (see below). This calculation can be 
solved iteratively to estimate n for any given values of N, p3 and p4. Ganev & 
Braithwaite (2003) mention the use of the hypergeometric distribution for 
small orchards. 

The major effect of including total orchard size is that the expected 
confidence for detecting a pest (p3) increases as the orchard size decreases, 
for a given number of samples (n) taken. That is, if 50 (or 132) trees are 
sampled, the likelihood of the sample including at least one infected tree is 
greater for the smallest orchards than for larger orchards.  In the extreme, if 
there are 50 or fewer trees in the orchard and there is some infection, the 
sample is certain to contain the infected tree, whereas in an extremely large 
orchard, the chances reduce to finding at least one infected tree in only 90% 
of cases.  In contrast, if a constant proportion of trees is sampled (as in 
schemes Q, I2 and I4 below), then for a given infection level, the chances of 
getting at least one infected tree in the sample increase as the orchard size 
increases.  If there is a single tree infected, then the chances of the sample 
containing this tree reduce as the orchard size increases for a fixed number 
of trees sampled in the orchard, but remain constant for a fixed proportion of 
trees sampled.  These effects are illustrated in Figure 1. 

 

Figure 1: Theoretical % chance of the sample containing at least one infected tree for different for 
numbers of trees selected, for two infection levels. The groups of points (staggering) are due to 
rounding to whole numbers of trees. No adjustment has been made for detection efficiency (p5) less 
than 1. 

 

3.2 Adjusting for aggregation 
For plum pox and brown rot (M. fructigena), aggregation has been observed.  
This means that a tree near an infected tree is more likely to be infected than 
a tree near an uninfected tree. The beta-binomial distribution can be used to 
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account for this aggregation (Madden & Hughes 1999). This distribution has 
an aggregation parameter, θ, which for plum pox was found from sampling 
orchards in the USA (Hughes et al. 2002) to have an average value of around 
0.09. If θ  = 0, then there is no aggregation, and the equation reduces to the 
equation above for binomial sampling. Where there is aggregation, it is more 
usual to sample groups of trees, rather than single trees, and common 
practice in the USA is to sample groups of four adjacent trees. An equation to 
estimate the number of groups (m) of size g where there is aggregation is 
given by Madden & Hughes (1999): 

 

 
−⎡ ⎤−

≈ ⎢ ⎥+⎣ ⎦
3

4

ln(1 p )θm
p ln(1 gθ)

 

 

This equation again takes no account of orchard size. Using the Richmond et 
al (1998) parameters and assuming that detection efficiency can be 
accounted for by replacing p4 in the equation by p4.p5 (which may not be 
appropriate, see below), this equation gives 15 groups of g = 4 trees, or 60 
trees in total. Generally, where there is aggregation, a larger sample will be 
needed to reach the same levels of confidence compared with cases in which 
there is no aggregation, and the sample size will increase as the level of 
aggregation increases. This second sample size equation can be used to 
estimate the confidence in detecting a pest (p3) when there is aggregation 
and the current scheme of 50 random trees is used, but trees are sampled in 
groups of four. That is, if m = 50, g = 4, θ = 0.09, p4 = 0.9, p5 = 0.05, then the 
equation can be rearranged to give p3 = 0.88.  This is a reduction of 2% in 
power – not that substantial for this level of infection, but it does mean that 
another 2% of orchards infected at the 5% level are likely to be classified 
incorrectly as being free from infection. If single trees are sampled rather than 
groups of trees (as in the current scheme), then aggregation has no effect on 
the power, since the spatial distribution of the trees has no influence on which 
particular trees are sampled. However in practice, it is usually very difficult to 
achieve a truly random sample, particularly in the field: consequently, the 
chosen sample is usually in some way affected by the spatial layout of the 
trees within the orchard. Hence, if there is aggregation, the power (p3) will be 
affected, since the sample is not independent of the location of the trees. 

3.3 Detecting a level of infection lower than 5% 
From the purposes of eradication rather than national surveying, 5% infection 
is probably too high a level to tolerate, and a more realistic level might be 
0.5% infection or less. If the percentage of plants infected is decreased to 
0.5%  (p4 = 0.005, again with p5 = 0.9), then with the binomial equation, the 
number of trees that need to be selected increases to 511 to have a 90% 
chance of getting at least one infected tree in the sample.  With aggregation 
of θ = 0.09, 150 groups of four trees (= 600 trees) would need to be selected. 
If the binomial sampling scheme is used (511), but there is aggregation and 
trees are sampled in groups of four, then the confidence in detecting infection 
(p3) when aggregation is present is slightly reduced (to p3 = 0.89), as above. 
If the aggregation is increased slightly, e.g. to θ = 0.15, then for p4 = 0.05 (5% 



Page 12  

infection), the number of groups required would be 16.3, which rounds to 17, 
and thus 68 trees would need to be selected.  

For even lower levels of infection, and increased aggregation, then the 
number of trees to select increases again, as can be seen in Figure 2. 

Figure 2: Numbers of trees to select, for 90% chance of there being at least one infected 
tree in the sample, for various levels of infection and aggregation. This assumes a 
detection efficiency p5  =  0.9. 

3.4 Conclusions 
These equations show: 

1. To have a reasonable level of confidence (p3 = 0.9) of detecting the 
pathogen, the number of trees that needs to be selected increases 
dramatically with a decrease in the infection level p4 required to be 
detected.  

2. If the infection is aggregated and sampling of groups of trees is done, 
or the sample is not completely random, then the number of 
individual trees required also increases as the level of aggregation 
increases. Even a low level of aggregation (θ = 0.09) increases the 
number of selected trees that are needed by 20%. 

3. However, although more individual trees need to be selected, with a 
low level of aggregation, the increase in confidence is reasonably 
low. The reduction in confidence (“power”) through assuming a 
random distribution when there is aggregation increases as 
aggregation increases. For the relatively high aggregation of θ = 1 
(which is rarely found; Madden & Hughes (1999)), p3 is below 80%. 

4. For a given sampling scheme, the size of the orchard affects the 
chances of the sample containing at least one infected tree (p3). 

There is no easily available equation for the aggregated case that includes an 
adjustment for orchard size. Since orchard size affects p3 where there is no 
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aggregation, it can be concluded that similar effects would be observed 
where there is aggregation. 

The primary effect of ignoring aggregation in sampling is in reduced efficiency 
for estimating the level of incidence, rather than in an increase in the chances 
of getting no infected trees in the sample. The confidence in this estimate is 
reduced (i.e. the 95% confidence interval is larger). 

Given that there are no easily available equations to estimate sample sizes 
(n) which adjust for both aggregation and orchard size, and given that the 
equations above also make no adjustment for the spatial layout of the 
orchard and spatial distribution of infected trees (other than a level of 
aggregation), equations cannot be used to properly explore various sampling 
schemes for plum pox or brown rot caused by M. fructigena. Instead, these 
can be studied through simulating orchards, and sampling these with various 
sampling schemes. 

3.5 Distribution of plum pox and brown rot 
(M. fructigena) in orchards 
The literature for plum pox indicates that the distribution of infected trees 
within an orchard is not completely random (Gottwald et al. 1995; Hughes et 
al. 2002; Dallot et al. 2003), and that there is some aggregation or clumping 
between infected trees. In addition, the distribution of the virus within an 
infected tree is far from uniform (Bodin Ferri et al. 2002). The data given by 
Gottwald et al. (1995) indicate that incidence increases by between two and 
four-fold between years on average: thus, it is reasonable to assume the 
trees in one year are infection sources for the disease found in the following 
year, and these are about ½ to ¼ of the infected trees from the second year 
in number. 

The plum pox virus is principally spread by aphids within an orchard, once 
infected trees have been introduced. Nemecek et al. (1993) found that the 
distance and direction of aphid flights within a potato crop was strongly 
correlated with wind direction. They found an approximate mean flight 
distance of 13 m, with nearly half of the flights below 5 m. Flights were 
examined for wind speeds below 2.5 m/s, since aphids were not thought to fly 
in higher wind speeds. 

The flights of aphids are quite similar to the distribution of spores by the wind 
(Dixon 1998), so spread of spores can be used to give a reasonable model 
for the spread of infection. In a series of papers, Xu and Ridout (1998; 2000; 
2001) simulated the spread of infection by spores, including the effect of a 
prevailing wind.  Their model was used with the information from Nemecek et 
al. (1993) to generate the data in a two-step process, as outlined below. 

Literature on the spatial distribution of brown rot (M. fructigena) on apple and 
pear is much less common. Information in Xu et al. (2001) suggests that the 
spatial characteristics of brown rot disease are sufficiently similar to those for 
plum pox that the same set of simulations can be used to explore sampling 
schemes for both diseases. Brown rot is generally spread by wounding 
agents and spores on the wind, with infection mainly through pre-existing 
wounds on the tree. Aggregation of infected trees (0.05 < θ < 0.321; Xu et al. 
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(2001)) appears to be at similar levels to that found in plum pox (e.g. 0.00 < θ 
< 0.95; Dallot et al. (2003)). Therefore, in the absence of more detailed 
information, the same simulations were used for both diseases. 

3.6 Orchard size and shape 
Within New Zealand, the number of trees in Prunus orchards varies 
considerably, as does the spacing of trees.  From papers within New Zealand 
journals, spacings of 5  2.5 m, 6  3 m, 5  2 m, and 2  3.2 m were 
found.  Similarly, the size of apple orchards also varies considerably, with 
several over 10 ha in size, and a median size of around 5 ha. Maps of 
orchard growing areas show orchards as small as 0.1 ha, and orchards in 
hobby farms are smaller still.  Therefore, the simulations used six orchard 
sizes, from about 0.05 ha to around 10 ha. Orchard shape also varies 
considerably. Two basic shapes were used in the simulations for each size, 
‘square’ and ‘long’, with ‘square’ orchards being approximately as wide in 
meters as they were long, and long orchards being about 5 times as long in 
meters as they were wide. A spacing of 5 m between rows and 3 m between 
trees within rows was chosen for all simulations. Details of the 12 orchard 
sizes are given in Table 1.  

Table 1: Details of orchards used in simulations. 

Meters 

Size Shape 
Area 
(ha) 

Number 
of rows 

Trees 
per row 

Trees in 
orchard 

Across 
rows 

Row 
length 

Very small Square 0.07 5 9 45 25 27 

 Long 0.07 2 22 44 10 66 

Small Square 0.12 7 11 77 35 33 

 Long 0.11 3 25 125 15 75 

Medium Square 1.19 22 36 792 110 108 

 Long 1.22 10 81 810 50 243 

Large Square 2.99 35 57 1995 175 171 

 Long 2.99 15 133 1995 75 399 

Very large Square 5.06 45 75 3375 225 225 

 Long 5.07 20 169 3380 100 507 

Huge Square 9.92 63 105 6615 315 315 

 Long 10.00 28 238 6664 140 714 
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4 Simulations 
Programs for the simulations, sampling and summary of results were written 
in GenStat (GenStat Committee 2005). 

Up to six incidence levels (one infected tree, 0.5%, 1%, 2%, 5%, and 10% of 
trees infected) were used for each of the 12 orchards. For the smaller 
orchards, the lower levels of incidence were either equal to one infected tree, 
or below one infected tree, so these were not done. Simulations were carried 
out in several steps: about 1/4 of the required number of infected trees were 
randomly selected as start trees. For each of these, aphid (or spore) flights 
were generated randomly, using the method of Xu & Ridout (2001).  Random 
wind events (speeds and angles) were generated and then used to create the 
aphid (or spore) flights. In each simulation, the randomly generated distances 
travelled by aphids (spores) were adjusted to have a mean median of around 
5 m. The simulation model allowed for the angle of the prevailing wind to be 
included, so four angles were used:  parallel to the rows (0°), at 45 degrees 
and 90 degrees to the rows, and no prevailing wind. For each start tree, the 
required number of aphid flights that fell within the orchard were selected, 
and the trees closest to these chosen to be infected. 

4.1 Detail of steps in the simulation - method 
Choose: 

infection level (proportion of trees infected): incidence 

number of rows in orchard: nrows 

number of columns in orchard: ncolumns 

If the infection level was one tree, then one tree from the orchard was 
randomly selected. Otherwise, these steps were used: 

Calculate:  

Total number of trees nt=nrows x ncolumns 

Number of trees require to be infected as ninf=round(nt*incidence/100) 

Number of start trees as nstart=round(ninf/4.2) 

Calculate remaining trees that need to be generated as nrem=nt-nstart 

Calculate number of trees per start tree that need to be generated: rather 
than an equal number of trees, this was chosen as an arithmetically 
increasing series;  

proportion for each start tree = (1,2...nstart)/sum(1...nstart) 

These proportions were then multiplied by nrem, and rounded to the nearest 
whole number. 

(In a few cases, this produces 1 less than the required number, so an extra 
tree was added to one of the start trees.) 
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Generate: 

For each of the 1000 simulations needed for each combination of orchard 
shape and size by incidence and by wind angle,  

1. Randomly select starter trees 

2. Generate distance and angles travelled for each start tree.  

As in Xu & Ridout (1998; 2000; 2001), wind speed and direction were created 
as X and Y distances, generated as random samples from a normal 
distribution. For the three sets with a prevailing wind, the mean and standard 
deviation (σ2) used for X and Y were 1,1 and 0,0.6 respectively, to give an 
elliptical distribution of winds. For the sets with no prevailing wind, the mean 
and σ2 used for X and Y were 0,0 and 0.8,0.8 respectively, giving a 
symmetrical distribution around the starter trees. The generated X and Y 
were converted into angles and speeds using standard trigonometry. For the 
three sets with a prevailing wind, angles were adjusted by 0, 45 or 90 
degrees to give the required prevailing wind angle. For all sets, the wind 
speeds were adjusted so that the final aphid travel distance had the required 
median and mean (with the same adjustment used for all sets and 
simulations). Wind speeds were converted into distances that aphids 
travelled using the half-cauchy distribution with two parameters (Xu & Ridout 
1998; 2000; 2001); the adjusted speed as a median, and a number randomly 
generated from a [0,1] uniform distribution. 

For each start tree, the number of aphid (spore) flights generated was the 
number of final infected trees required for that starter tree x 15, except for the 
very small and small orchards, when it was x 30. These multiples were 
selected after experimentation, to ensure that most simulations generated 
sufficient infected trees within the orchard. From the flights generated, a 
random selection of those falling within the orchard was made, up to the 
required number for each start tree, and the closest tree to each flight was 
selected to be the one infected. Sometimes, a simulation did not generate 
enough trees falling within the orchard, so that simulation was abandoned, 
and another one done to replace it. 

Save: 

For each simulation, the position of start trees, the position of infected trees, 
and the start tree that was associated with each infected tree were saved. 
The mean and median angle and distance of the aphid flights were calculated 
and saved. 

4.2 Assessment and summary of simulations 
For each simulated data set, other than those with only one tree, two 
parameters were estimated to assess whether the simulated data resembled 
those found in three plum pox survey papers (Gottwald et al. 1995; Hughes 
et al. 2002; Dallot et al. 2003) and the one brown rot paper (Xu et al. 2001). 
For each simulated data-set, the orchard was divided into quadrats of 4 x 4 
trees, and the number of infected trees within each counted. For most 
orchard sizes, there were quadrats at the edges of the orchard which 
contained fewer than four trees, since the number of rows or number of trees 
per row was not a multiple of four (illustrated in Figure 3 for the very small 
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square orchard). Thus, the actual number of trees in all quadrats was also 
recorded. From the numbers infected per quadrat, the θ index of aggregation 
parameter for the beta-binomial distribution was estimated using the 
algorithm of Smith (Smith 1983), as implemented in the BBD software 
(Madden & Hughes 1994). The binomial index of dispersion (D) was also 
estimated using the same BBD software. 

         
         
         
         
         

Figure 3: Illustration of incomplete 4 x 4 quadrats, using the example of a 
Very Small, square orchard.  Two complete 4 x 4 quadrats, two 1 x 4 
quadrats, one 4 x 1 and one 1 x 1 quadrat are shown. 

 

Figure 4 shows a small selection of simulated orchards, and Figure 5 
summarises the estimated binomial index of dispersion (D) and θ 
parameters. If the binomial index of dispersion exceeds one, this indicates 
that there is some aggregation in the spatial distribution of infection, and the 
larger this dispersion is, the greater the aggregation. For 4 x 4 quadrats, 
Dallot et al. (2003) found values for this parameter which ranged from 0.73 to 
7.61, with all but two above 1, and a median value of 1.68. Similarly, if the 
beta-binomial θ parameter is greater than zero, this indicates aggregation. 
Values of θ found by Dallot et al. (2003) ranged from 0 to 0.95, with a median 
of 0.05. For brown rot, Xu et al. (2001) found values of θ ranging from 0.005 
to 0.321, with strong evidence that the infection was not randomly distributed, 
but aggregated. These (and other papers in the literature) strongly suggest 
aggregation is present in most cases, but that it is usually weak. Where they 
can be estimated, the ranges of values for these parameters for the 
simulated data fall mostly within the ranges found (Figure 5), indicating that 
the simulated data have at least some properties of data from real orchards. 
(θ could not always be estimated, particularly for the smallest orchards, 
where there was only a small number of 4 x 4 quadrats of trees). 
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Figure. 4: Examples of simulated orchards: Medium size, square and long 
shapes, with 5% disease incidence, for four wind directions/conditions.  Each 
square is a tree, and coloured squares indicate infected trees. Squares of the 
same colour indicate trees infected from the same start tree, with the start 
tree edged in black.  
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Figure 5: Median estimated binomial index of dispersion D and aggregation parameter θ, 
for simulated orchards. 

 

5 Sampling schemes 
Six sampling schemes were used with each data-set (Figure 6): 

1. 50 randomly selected trees per orchard, the Richmond et al. (1998) 
MAF scheme (R50). Where there were 50 or fewer trees in the 
orchard, all trees were selected. 

2. 500 randomly selected trees per orchard (R500). Where there were 
500 or fewer trees in the orchard, all trees were selected. This is the 
approximate number suggested to detect 0.5% infection, with 90% 
confidence and a 90% detection efficiency. 

3. One tree randomly selected from the first two trees in the first two 
rows (four trees), then every second tree in every second row from 
this tree. One quarter of the trees in an orchard was assessed in this 
scheme (I2). 

4. One tree randomly selected from the first four trees in the first four 
rows (i.e. one tree from sixteen trees), then every fourth tree in every 
fourth row from this tree. One in every 16 trees (6.25%) was 
assessed with this scheme  (I4).  
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5. Sampling groups of four adjacent trees. The orchard was divided into 
groups (quadrats) of two rows x two trees within a row. The first 
group was selected from the first four quadrats (numbered down a 
row), then every fourth group systematically from then on. All trees 
within a selected group were sampled. One quarter of the trees in an 
orchard was assessed in this scheme (Q). 

6. 15 randomly chosen 2 x 2 quadrats (60 trees in all). The orchard is 
divided into all possible 2 x 2 quadrats, and 15 of these randomly 
selected for sampling. If the number of trees to sample is calculated 
using the same parameters as Richmond et al. (1998) used (to get 
50 trees), but allowing for a low level of aggregation (θ = 0.09), then 
60 trees in groups of 2 x 2 should be sampled (see above).  
Therefore, this scheme was included for comparison (Q15).  

 

Figure 6:  Illustration of the six sampling schemes (for Square, Medium Orchard).  See text for details.  
Squares respresent individual trees; green squares are selected trees. 
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Schemes R50, R500 and Q15 sample a constant number of trees regardless 
of orchard size, whilst schemes I2, I4 and Q sample an approximately 
constant proportion of all the trees in an orchard. The actual number of trees 
sampled in Q15, and the proportion in Q will vary slightly, since some 
quadrats at the edges of the orchard may contain fewer than four trees  
(Figure 3).  Similarly, the proportions sampled under schemes I2 and I4 will 
vary slightly because the numbers of rows / trees in a row will not always be 
exact multiples of 2 or 4 (Table 1). 

Schemes I2, I4 and Q were used by Hughes & Gottwald (1998) to assess 
sampling schemes for Citrus orchards.  Scheme Q has since been used to 
assess Citrus and Prunus orchards in large-scale surveys (Hughes & 
Gottwald 1999; Hughes et al. 2002), and the approach is used for sampling 
by the USDA-APHIS for their plum pox virus surveys 
(ceris.purdue.edu/napis/pests/ppox/survey/ppv00-survey.html). In these 
surveys, material from the group of four trees is pooled for assessment of 
infection by ELISA, reducing the number of tests required for a given number 
of trees sampled. 

In the results we present below, estimated numbers of infected trees are not 
adjusted for testing efficacy, that is, not adjusted to allow for p5 less than 1. 
Consequently, if testing were not fully efficient, then the results from the 
simulations would need to be adjusted to account for this.  The effect of 
reduced detection efficacy (p5) on the proportion of samples detected as 
containing at least one infected tree is also presented below. 

5.1 Results 
Figure 4 shows some examples of orchards generated with square or long 
shapes and with the four different simulated wind conditions. Where a 
prevailing wind was included, infected trees were generally downwind of the 
start tree.  For no wind, trees were approximately evenly spaced in all 
directions from start trees.   

The theoretical chance of a sample containing an infected tree was explored 
in Figure 1, in which the infected trees were assumed to be randomly placed, 
and the orchard shape was ignored. The samples taken from the simulations 
can be used to show how well the theoretical calculation matches a more 
realistic situation, with some aggregation, two shapes of orchard, and 
differing sampling schemes. The results from the simulations (Figure 7) are in 
line with the theoretical calculations. There was little difference between the 
long and square orchards, and little difference between wind directions 
(details not shown). This suggests that the low level of aggregation found in 
the plum pox and brown rot surveys and used in the simulations is not large 
enough to have a major deleterious effect on sampling schemes assuming no 
aggregation.  For all but the smallest orchards, schemes Q and I2 are most 
effective at detecting the lowest levels of infection. 
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The proportion of samples containing at least one infected tree increases 
rapidly with increasing disease incidence (Figure 8).  Schemes R500, Q and 
I2 are almost 100% efficient at detecting infection where incidence is above 
2% for all but the two smallest orchard sizes. For the smallest orchards, 
schemes R50, R500 and Q15 are most efficient, principally because a 
greater proportion of the orchard is sampled. Scheme I4 falls somewhere 
between these groups, except for small and very small orchards, where it is 
very inefficient.  For the lowest levels of infection (one tree, 0.5%) schemes Q 
and I2 are most effective for the larger orchards, but scheme R500 is more 
effective for the smallest orchards. This suggests that if very low levels are 
important to detect, then the sampling scheme should vary, depending on the 
orchard size. However, even schemes Q and I2 have less than a 30% 
chance of detecting a single infected tree. 



Page 23  

Figure 7:  Percentage of samples containing at least one infected tree, for each infection level, orchard size and sampling scheme. 
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Figure 8:  Percentage of samples containing at least one infected tree, vs number of trees in an orchard, for each sampling scheme 
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6 Estimating disease incidence 
The proportion of samples containing at least one infected tree is the power 
of the sampling scheme (p3).  As well as detecting that infection is present, it 
is usually desirable to obtain an accurate estimate of the level of infection (or 
disease incidence) present, p4.. The proportion of infected trees in a sample 
is an estimate of the level of infection in the sampled orchard, and if this is 
summarised across all of the simulated orchards, it is possible to see how 
well the underlying level of infection is estimated. Figure 9 shows the median 
level of infection, and the 5% and 95% quantiles: that is, if the simulations are 
sorted in order of estimated infection level, 50% have infection below the 
median, 5% have estimated infection below the 5% quantile, and 5% have 
estimated infection above the 95% quantile. If the 5% and 95% quantiles are 
close to each other, this indicates that most samples have similar estimated 
infection levels, indicating a reliable (or precise) sampling scheme. If the 
median lies close to the underlying infection level, then the sampling scheme 
gives an accurate estimate of infection. 

For the smallest orchard (Long, Very Small), infection was generally 
underestimated by all of the schemes. In part, this is because the actual 
number of infected trees for a given infection level is lower than the defined 
percentage because of rounding.  For example, for 10% and 5% nominal 
infection rates, the actual infection rates were 9.1% and 4.5%. Thus, for R50, 
R500 and Q15, the estimated equals the ‘true’ actual for all samples, since all 
the trees in the orchard (44) were sampled under these schemes. However, 
for schemes I2 and Q (a quarter of the orchard sampled, or around 11 trees) 
the two lower levels of infection (one tree, 5%) were generally 
underestimated as no infection. I2 was a little more precise than Q, since the 
95% quantile is closer to the actual infection than for Q, indicating that with 
this scheme, estimated infection would be closer to the true value for more 
samples than with the Q scheme.  Using scheme I4 (1/16 of the orchard, or 
about five trees sampled), infection was not detected, even at 10%. 

Effect of wind:  The varying wind directions had little or no effect on either the 
precision and accuracy of estimated infection levels, or on the percentages of 
samples that contained no infected trees. With higher levels of aggregation, 
or stronger prevailing winds, this might not be the case, but this has not been 
explored here. 
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Figure 9:   Estimated infection v. actual infection for six sampling schemes: Median over all samples, 5% and 95% quantiles (see text), with 
Estimated=Actual marked. Top: Long,Huge Orchard, Bottom: Long,Very Small Orchard. 
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7 Adjusting for detection probability, p5<1 
The probability of there being at least one infected tree in a sample (power, 
p3) is usually calculated by working out the probability of there being no 
infected trees in the sample, and subtracting this from one: 

 

p3 = 1 – prob(sample contains no infected trees) 

 

Therefore, to estimate the power when detection probability (p5) is less than 
one, a similar approach is required. For a sample of size n from a field 
containing N trees, with x infected trees in the sample, then the probability 
that none of the x infected trees will be detected as being infected is: 

  

x
5prob(all tests negative/ x infected trees in sample) = (1-p )  (1) 

 

using standard probability calculation rules, including assuming the result of 
the test for one tree is independent of the test for another tree. 

 

If the number of infected trees in the sample follows a hyper-geometric 
distribution (with a proportion p4 infected), then:  

( )⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
4 4N.p NN 1-p

prob (x infected trees in sample of size n)=
x nn-x

 

 

Thus, using standard rules for combining probabilities, 

( )

( )

−

⎛
−

∑

∑

4

4

min n,N.p
x

5
x=0

min n,N.p
x 4

5
x=0

prob (no infected trees detected in sample of size n)

                           = (1 p ) .prob(x infected trees in sample of size n)

N.p
                           = (1 p ) .

x
( )⎛ ⎞⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

4 NN 1-p
nn-x

 

Thus, the power to detect at least one tree in the sample as being infected is: 

( ) ( )⎛ ⎞⎛ ⎞ ⎛ ⎞
− ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∑

4min n,Np
x 4 4

5
x=0

prob (at least 1 infected tree detected in sample of size n) 
N.p NN 1-p

                                    = 1- (1 p ) .
x nn-x

 

 

The binomial or beta-binomial distributions could be included in place of the 
hyper-geometric distribution in a similar manner. 
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The calculations used to estimate sample size (as used by MAF; Richmond 
et al. 1998, detailed above) include an adjustment for detection efficiency, by 
multiplying the orchard infection rate p4 by p5..This is appropriate, providing 
the probability of detecting an infection in material from an infected tree is 
independent of the infection rate in the orchard, and that the infection has a 
binomial distribution within the orchard, and also that detection of infected 
trees in a sample also follows a binomial distribution. That is, if the binomial 
distribution is used instead of the hyper-geometric distribution: 

( ) ( )⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
n

n-x x-tx t
3 3 5 5

x=0

prob (t trees detected as being infected in sample of size n) 
n x

                                                     = p  1-p . p  1-p  
x t

 

This simplifies to a binomial distribution with probability p4p5: 

( ) ( )⎛ ⎞
⎜ ⎟
⎝ ⎠

t n-t
4 5 4 5

prob (t trees detected as being infected in sample of size n) 
n

                                                      =  p p  1-p p
t

 

Rearranging this gives the first equation above for sample size calculations 
(Richmond et al. 1998). 

In the general case: 

 

×∑
n

x=0

prob (t trees detected as being infected in sample of size n) 

                              = prob(x in n) prob(t detected) 

where:
prob(x in n) = prob(x infected trees in sample of size n)
prob(t detected) = prob(t of the x infected trees detected as being infected)

 

 

Prob(x infected trees in a sample of size n) does not always have a binomial 
distribution, and prob(t of the x infected trees infected as being infected) may 
not have a binomial distribution. Therefore, in general prob(t trees detected 
as being infected in a sample of size n) will not have the same distribution as 
prob(x infected trees in a sample of size n), but with parameter p5p4 instead 
of p4 (thus, p5 should probably not be included in the beta-binomial as was 
done in the section ‘Calculating the number of trees to sample’ above). 

In the current study, because of the above, it is not appropriate to estimate p3 
(power) by adjusting infection level in the simulated orchard to be p5 times 
the infection rate p4. It is more appropriate to examine how a detection rate of 
p5 < 1 affects the power p3 using the simulated orchards and then adjust for 
p5. This also allows the effect of p5 on p3 to be examined for the lowest levels 
of infection (half%, one tree), when p5 x p4 would result in no infected trees to 
include in the simulation! (A new set of simulations would also be very time-
consuming, since each set of simulations requires about 10 hours of 
computer running time, plus another 2.5 hours to summarise the results). 

As an alternate approach, using the existing simulations, prob(no infected 
trees detected in a sample of size n) can be calculated in an analogous 
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manner to that used for the hyper-geometric distribution, using equation 1 
with each individual simulation, summing over simulations, and dividing by 
the number of simulations. 

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑ i

no.simulations
x

5
i=1

prob (at least 1 infected tree detected in sample of size n) 

                                     =1- (1 p ) no.simulations
 

 

where xi is the number of infected trees in the sample taken from simulation i. 
This can be calculated very quickly for a range of values for p5.  The results 
of such an analysis are presented below and in Table 2. 
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Table 2:  Sampling schemes with the greatest power to detect disease in infected orchards 
varying for orchard size and three levels of disease incidence (p4), assuming detection 
probabilities (p5) 1 (i.e. no false negatives from either surveying or laboratory analysis), 0.75 and 
0.5.  Details of orchard sizes are presented in Table 1.  The Power (p3) is presented as calculated 
from the simulations 

 

Detection probability (p5) of 0.75 

 5% incidence 0.5% incidence 1 tree infected 

Orchard size Scheme Power Scheme Power Scheme Power 

Huge R500, Q, I2, I4 >99.99 Q, I2 99.9 Q 17.3 
     I2 19.4 
Very large R500, Q, I2,  >99.99 Q 96.7 Q 19.1 
 I4 >99.9 I2 97.8 I2 19.0 
Large R500, Q, I2 >99.99 R500 87.5 R500 19.1 
 I4 99.3 I2 90.0 I2 18.1 
     Q 19.3 
Medium R500  >99.99 R500 91.7 R500 47.1 
 Q >99.9     
Small R50 93.8 n/a n/a R500 75.0 

 R500 99.6 n/a n/a   
Very small R50, R500, Q15 93.8 n/a n/a R50, R500, Q15 75.0 

 
Detection probability (p5) of 0.5 

 5% incidence 0.5% incidence 1 tree infected 

Orchard size Scheme Power Scheme Power Scheme Power 

Huge R500, I4 >99.99 Q,  98.6 Q 11.6 

 Q, I2 >99.99 I2 98.9 I2 13.0 
Very large R500, Q, I2  >99.99 Q 89.2 Q 12.7 
 I4 99.6 I2 90.8 I2 12.7 
Large R500, Q, I2 >99.99 R500 73.6 R500 12.7 
 I4 96.0 I2 76.0 I2 12.1 
     Q 12.9 
Medium R500 >99.99 R500 77.3 R500 31.4 
 Q 99.5     
 I2 99.7     
Small R50 80.1 n/a  R500 50 
 R500 93.8     
Very small R50, R500, Q15 75.0 n/a  R50, R500, Q15 50 
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8 Summary and comparison of 
sampling schemes 

8.1 Detection methods 

8.1.1 Detection of PPV 
Methods for detecting PPV-infected trees include visually observing 
symptoms on leaves or fruit, biological indexing by chip grafting, conducting 
ELISA-based methods, and conducting RT-PCR-based methods (EPPO 
2004).  Difficulties in reliably detecting PPV infection are due to various 
factors including latency of infection, low virus titres and uneven distribution 
within plants.   

 Symptoms.  As discussed above, the appearance of symptoms is 
variable with time of year, growth of the plant, severity of the infecting 
PPV strain and plant cultivar.  Latent infections are common and 
appearance of symptoms can occur months or years after infection 
(Quiot et al. 1995; Bodin et al. 2003).  Dormant trees cannot be scored 
for the presence of symptoms on leaves and fruit.  If symptoms do 
appear, they are best observed on leaves in spring, but can also appear 
as flower petal discolouration, or symptoms on fruit.   

 Sampling of trees.  Since PPV is unevenly distributed in infected trees 
and can be present in low concentrations, selection of samples from 
individual trees is critical for ELISA or RT-PCR-based detection.  If 
symptoms are present, then these tissues (leaves, flowers or fruit) should 
be sampled since they will contain the highest virus titres.  Otherwise, 
samples should be taken in quadrants (or greater) around the tree, with 
leaves collected from the middle of branches, and within the tree canopy.  

Detection probability (p5) of 1 

 5% incidence 0.5% incidence 1 tree infected 

Orchard size Scheme Power Scheme Power Scheme Power 

Huge R500, Q, I2, I4 >99.9 Q, I2 >99.9 Q 23.1 

     I2 25.9 
Very large R500, Q, I2, I4 >99.9 Q 99.0 Q 25.5 
   I2 99.6 I2 25.3 
Large R500, Q, I2 >99.9 R500 94.5 R500 25.4 
 I4 99.9 I2 96.6 I2 25.7 
     Q 24.1 
Medium R500, Q, I2 >99.9 R500 97.8 R500 62.8 
Small R50 99.0 n/a  R500 100 
 R500 100     
Very small R50, R500, Q15 100 n/a  R50, R500, Q15 100 
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The timing of leaf sampling is important – and is best carried out in spring 
or early summer before temperatures get too high (EPPO 2004).  Adams 
et al (1999) showed that bark and root samples can be used very 
successfully to detect PPV in dormant trees, but this approach was not 
incorporated in the EPPO Standard. 

 ELISA.  Kits for DAS-ELISA (Double Antibody Sandwich-ELISA) or for 
DASI-ELISA (Double Antibody Sandwich Indirect ELISA) are available 
from REAL, Durviz (www.durviz.com), and have been validated in 
European ring tests.  Methods for DAS- and DASI-ELISA are detailed in 
the EPPO Standard (EPPO 2004).  ELISA is less sensitive than IC-PCR 
and therefore has limited tolerance for pooling of samples.  For example, 
Hughes et al. (2002) found that ELISA reliably detected two infected 
leaves in a pooled sample of 16 total leaves using the standard antibody 
dilution (1:1000).   

 IC-PCR.  Protocols for IC-PCR were developed by Wetzel et al. (1991b; 
1992) and Olmos et al. (1997).  IC-PCR has advantages over ELISA 
methods, in particular its greater sensitivity of 1000-5000X; (Adams et al. 
1999; López-Moya et al. 2000).  Plant extracts prepared for ELISA 
detection can be used for IC-PCR, rather than specific RNA extractions 
that are required for conventional RT-PCR (therefore the time required 
for sample preparation is no greater for IC-PCR than for ELISA).  In 
addition, IC-PCR effectively concentrates virions thereby increasing the 
sensitivity of the test.  Coating of PCR tubes or plates with antibodies 
(polyclonal or monoclonal 5B-IVIA) is carried out as for ELISA, then the 
immunocapture phase is carried out by adding plant extract to the coated 
plate/tube, incubating, then washing.  It is important to remove washes 
by pipetting using fresh pipet tips rather than by decanting to avoid cross-
contamination of wells because of the increased sensitivity of IC-PCR.  
RT-PCR products can be detected by agarose gel electrophoresis or 
colorimetrically using a digoxygenin-labeled probe (EPPO 2004).    

8.1.2 Detection of M. fructigena 
Brown rot (M. fructigena) infected apple or pear trees are identified by 
observing blighted blossoms, rots associated with wounds or regions of 
contact on fruit, and/or cankers on twigs and branches, by culturing the 
fungus and examining its morphology, and by PCR diagnostics.  EPPO 
(2003) has published a Standard for diagnosis of the related pathogen, M. 
fructicola. 

 Symptoms.  M. fructigena symptoms on blossoms, branches and stems, 
and fruit have seen described and illustrated by EPPO (2003).  
Symptoms are most easily observed on fruit that is approaching maturity, 
where firm rots associated with wound sites are seen.  Characteristically 
M. fructigena is seen on apples and pears, but other fruit trees in the 
Rosaceae also serve as host plants.   

 Biological characterisation.  Preliminary identification of the fungus as M. 
fructigena can be carried out by culturing infected material on potato 
dextrose agar (PDA), then by observing the morphology of hyphae and 
conidia in particular (EPPO 2003).  The morphologies of M. fructigena, 
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M. fructicola and M. laxa overlap, therefore cannot be used alone for 
definitive identification. 

 PCR.  A multiplex PCR method that distinguishes M. fructigena from M. 
fructicola, M. laxa and M. polystroma (Côté et al. 2004) amplifies different 
sized bands from each of these three pathogens.  Fungal DNA can be 
extracted either from cultures or from hyphae protruding from infected 
fruit and dissected away using a sharp needle.  It is important that 
positive control amplifications, for example based on ITS sequences 
(Hughes et al. 2000; EPPO 2003), are done to ensure that extractions 
are suitable for directing PCR. 

8.2 Estimating resources required for detection 
Resources required to detect PPV or M. fructigena by surveying and 
diagnostic tests (for plum pox virus) were estimated by first considering the 
sampling schemes that provide the greatest power for detecting at least one 
infected tree in orchards of varying sizes (from very small to huge) at three 
disease incidences: 5%, 0.5% and one tree.  In addition, the effects of three 
levels of detection probability (p5; 1, 0.75 and 0.5) on the power of the various 
sampling schemes are also presented.  The results (Table 2) provide a basis 
for selecting sampling schemes that are most efficient for determining 
whether infection within an orchard can be detected. 

Data from simulations on the power of the R50 sampling scheme for various 
orchard sizes, with three disease incidence levels (5%, 0.5% and one tree), 
and assuming a detection probability (p5) of 1, are summarised in Table 3.  
The R50 sampling scheme was the basis for the pioneering work on 
surveillance methods by Richmond et al. (1998).  This summary shows that 
the power to detect at least one tree in a sample is more than 90% when the 
disease incidence is 5% (as expected), but that the detection power drops off 
considerably at lower disease incidences, also as expected, except for the 
smallest orchard sizes. 

 

Table 3:  Power to detect infected orchards of various sizes and at 
three incidence levels using the R50 sampling scheme (for detection 
probability p5 = 1). 

 Power (%) to detect infected orchards 

Orchard size 5% incidence 0.5% incidence 1 tree/orchard 

Huge 92.5 21.8 0.7 

Very large 92.6 22.7 1.9 

Large 92.8 21.6 2.1 

Medium 93.5 23.7 6.8 

Small 99.0 n/a 64.3 

Very small 100 n/a 100 
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Estimates of the resources required for detection and subsequent diagnosis 
are presented in Table 4.  The estimates are presented for examining single 
orchards, ranging in size from huge to very small.  The times required to 
survey orchards for M. fructigena (3.6 min/tree) and PPV (3.1 min/tree) were 
taken from Ganev and Braithewaite (2003) and do not include travelling time.  
The times required to carry out ELISA or IC-PCR to detect or diagnose PPV 
were taken from Lopez-Moya et al. (2000) and Levy et al. (2000a).  These 
authors estimated that one person could process 300 ELISA samples/day 
and 120 IC-PCR samples/day.  Some automation will be required to meet a 
throughput of 300 ELISA samples/day, particularly of sap extraction, plate 
washing and plate reading. López-Moya et al  (2000) also estimated the 
consumable costs/individual test of the ELISA and IC-PCR diagnostic tests 
as 0.7 and 1.4 Euros, respectively.  For the purposes of Table 4, these 
values have been doubled to reflect the value of the New Zealand dollar.  
The times and consumable costs required to identify and diagnose M. 
fructigena brown rots by culturing and PCR have not been estimated since 
these methods are identification tools that would be applied once suspected 
M. fructigena rots have been observed and are not routine screening tools. 
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Table 4:  Estimation of resources required to sample orchards of various sizes using the sampling schemes that give the best power to detect infection 
incidences of 0.5% or 1 tree/orchard. 

Orchard size  
(mean number of trees) a 

Scheme Number of trees 
sampled b 

BR survey 
time (hr) b 

PPV survey 
time (hr) c 

PPV ELISA time 
(days) d 

PPV IC-PCR 
time (days) d 

ELISA costs 
($NZ) 

IC-PCR 
costs ($NZ) 

Huge (6640) R500 500 30.0 25.8 1.67 4.17 700 1400 

 Q 1660 99.6 85.8 5.53 13.83 2324 4648 

 I2 1660 99.6 85.8 5.53 13.83 2324 4648 

 I4 415 24.9 21.4 1.38 3.46 581 1162 

Very large (3378) R500 500 30.0 25.8 1.67 4.17 700 1400 

 Q 845 50.7 43.7 2.82 7.04 1183 2366 

 I2 845 50.7 43.7 2.82 7.04 1183 2366 

 I4 211 12.7 10.9 0.70 1.76 295.4 591 

Large (1995) R500 500 30.0 25.8 1.67 4.17 700 1400 

 Q 499 29.9 25.8 1.66 4.16 698.6 1397 

 I2 499 29.9 25.8 1.66 4.16 698.6 1397 

 I4 125 7.5 6.5 0.42 1.04 175 350 

Medium (801) R500 500 30.0 25.8 1.67 4.17 700 1400 

 Q 200 12.0 10.3 0.67 1.67 280 560 

 I2 200 12.0 10.3 0.67 1.67 280 560 

Small (76) R50 50 3.0 2.6 0.17 0.42 70 140 

 R500 76 4.6 3.9 0.25 0.63 106.4 213 

Very small (44.5) R50 44.5 2.7 2.3 0.15 0.37 62.3 125 
a  number of trees averaged for long and square orchard dimensions. 
b  number of trees sampled averaged over the simulations for long and square orchard dimensions. 
c  times for surveying taken from Ganev & Braithewaite (2003). 
d  times and costs for laboratory analysis taken from Levy et al. (2000) and Lopez-Moya et al. (2000). 
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9 Generalisations that can be drawn 
from this work 
Our conclusions regarding the power of various sampling schemes for 
detecting the presence of a plant pest in a horticultural or agricultural sample 
would most likely be similar for diseases or pests that show a similar or lesser 
amount of aggregation than the diseases examined in this report.  Orchard 
(or sample) size and the requirement to detect low pest or disease incidences 
are the major factors affecting the choice of sampling scheme.  In addition, 
the results of the approach taken would hold when there is a number of 
discrete units such as trees, grains or fruits; and would apply to a “structured” 
population regardless of shape.  We draw this conclusion because the spatial 
layout (square versus long orchards in this case) did not have a significant 
effect on the power of the various sampling schemes.   

The simulation approach is valuable if it is necessary to take into 
consideration various aspects of detection with one sampling scheme (for 
example, both field and laboratory detection methods), because the 
combining of equations can be algebraically very complex and it may not be 
possible to reach a theoretical solution. 
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Appendices 
Appendix I  Review of report: Models for post-border 
detection of visibly undetectable exotic plant pests 
 
David Baird, Biometrician, AgResearch, Lincoln 

Overview 

1. This report is a comprehensive analysis of sampling methodologies 
of a wind-dispersed pathogen in orchards. The sampling and 
simulation techniques used are appropriate for this analysis. I have 
checked statistical methods and have found them to be sound. The 
key result in this paper is the assessment of different sampling 
methods for aggregated infections. The results critically depend on 
the appropriateness of the dispersal model to generate the type of 
aggregation that will be found in the field. After examining the 
literature review and references, I am satisfied that the Gaussian 
plume model simulated represents a reasonable model for the two 
pathogens considered. This model is commonly used in wind 
dispersal situations and has been validated under a range of 
conditions (Erbrink, 1995; de Jong et al, 2002). The choice of 
parameters of the aphid spread being extrapolated from a potato 
crop to trees is perhaps suspect, as the higher take off points for 
aphids on trees would be expected to increase their range.  
However, provided that the level of aggregation matches that 
observed in actual studies, this is unlikely to affect the results. I have 
checked the simulation programs and cannot find any mistakes in 
these, and the results examined are consistent with what I would 
expect. 

2. The examination of the model under very strong prevailing winds 
(row, column and diagonal) will generate more dispersed patterns 
than found in practice in New Zealand conditions. The following 
figure shows the wind roses for six sites around New Zealand. It can 
be seen that some sites do have some strong prevailing directions, 
but most do not have a single prevailing direction, as simulated in the 
data. 
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                Hamilton                                       New Plymouth                                            Lincoln   

  

                   Timaru                                                    Mosgiel                                                    Gore 

Wind roses (down-wind run) for six New Zealand sites 

3. The sampling schemes also tend to confound the sampling method 
and the number of trees sampled. It would have been useful to keep 
these separate and look at a factorial combination of sample type 
(random or systematic), plot size (single or four tree plots) and 
sample size. In addition, there seemed to be another obvious sample 
type (stratified random) which falls between the extremes of random 
and systematic that could have been examined. It would be expected 
that a systematic sampling scheme would be better than a random 
scheme, with the gain increasing as the level of aggregation 
increases. This was what was found, although the gains were 
modest with the levels of aggregation simulated from the dispersal 
model used. 

4. The analysis of the sampling methods by orchard shape and size is 
useful in validating the techniques over a range of conditions. 
However, I would have been surprised if these had produced 
differing results, beyond the effects due to small sample sizes and 
the number of samples collected. With small orchards, the simulation 
technique used will be influenced by edge effects, with rejected 
samples tending to have samples more often near the edges. This is 
a typical problem in spatial analysis and will have influenced the 
departures from the expected median index of dispersion, as seen in 
Figure 5 for very small and small orchards. The edge effects can be 
seen in the following plots of the mean number of infections observed 
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over all 1000 simulations for the long small orchard at the 10% 
infection level. 

 

 
Row  Diagonal Column None 

 

Edge effects in Long Small Orchard at 10% infection rate by wind direction 

5. The section on adjusting for aggregation I believe only applies when 
groups of plots are being sampled.  For example, a simple random 
sample of single trees, the level of aggregation cannot change the 
probability of detection. These calculations are of use when multiple 
samples are bulked together (as in the quad plots). This result 
indicates that under aggregation, single tree plots are more efficient, 
as seen in the simulation study. However, cost-effectiveness of 
multiple tree plots may ameliorate this. 

Although under the hypergeometric and beta-binomial models the 
effect of the efficacy of detecting an infected host, p5, is not included 
in the simulations, in any reasonable-sized sample this would be a 
second order effect, and would be unlikely to shift the results by 
much. 

6. The differential costs of the different sampling schemes should have 
been considered in Table 4, where a common cost per tree sample is 
used. However, a random study, due to the time taken to identify the 
trees in the sample, is going to take more time than a systematic 
sample in which only the first tree has to be located, with subsequent 
trees able to be found very quickly. As previously mentioned, quad 
tree plots will also be more time-efficient than single trees.  

7. The option of grouped testing (where samples from multiple trees are 
bulked) could have been examined in more detail. This technique is 
referenced in the discussion of the USDA plum pox surveys. A cost-
benefit basis could be carried out, including in the calculations a 
component which allows for differing probabilities of detection based 
on the number of infected trees in the bulked sample. It seems that 
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perhaps provided two leaves are positive in a sample of 16, the plum 
pox virus can be detected “reliably” (Hughes et al. 2002), but are the 
probabilities of detection constant for one leaf in 16 and three or 
more leaves in 16? With two in 16 being detected reliably, does this 
mean that eight trees can be bulked with two leaves per tree, or four 
trees with four leaves per tree, two trees with eight leaves per tree, 
etc? Table 4 seems to assume that trees are not bulked.  

8. The work on simulating the single tree case was not necessary, as in 
this case, there can be no aggregation effect, and all sampling 
schemes with any form of randomization (i.e. even the systematic 
sample has a random starting point) must logically give the common 
result of the probability of detection being p5×f, where f is the 
sampling fraction. 

The most important conclusion of this paper is that systematic 
sampling is the best approach for aggregated spatial distributions. 
The sampling fraction can then be set for a required level of 
precision, based on simulation (further simulations may be required 
to give a wider range of sampling fractions/numbers). 

Details 

a) The sentence on the goal could be usefully split into several simpler 
sentences (although it is a feat to get it all into one sentence).   

b) The sentence “Fundamental research has shown that the spatio-
temporal distribution of plant disease epidemics may be best 
described using different models (e.g. the binomial, beta-binomial or 
hypergeometric distributions), depending in particular on the degree 
of aggregation of the affected plants (Madden & Hughes 1999).”  is 
not correct as these models apply to the counted number of infected 
plants in a sample and not their spatial dispersion.   

c) In the section, “Detail of steps in the simulation - method” the 
Number of start trees is given as round(ninf/3.5), but the simulation 
program uses round(ninf/4.2). 

d) The distribution of the number of trees generated per start tree 
seems arbitrary, and there is no justification to the method used. 
Given that most infected orchards are likely to start from a single 
case, a non-uniform size distribution is more likely, with one large 
patch and with several smaller patches due to escapes from the 
initial infection. However, the patterns in the orchards examined by 
Gottwald et al. (1995) show a few large patches, and then many 
singletons. Thus, the pattern of patch sizes used is a compromise 
between these two cases. Again, the key outcome is that the level of 
aggregation in the simulated samples matches that likely to be found 
in the field, so this is probably of minor importance, given that this 
has been demonstrated.  

e) Figure 7 may be better plotted on a logit scale to better separate the 
curves as they approach 100%. In Figure 9, for Long Very Small 
orchard, plot I4 is missing its 95th percentile which should be at 20% 
by my calculations, and so is off the scale of the plot. 
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Appendix II  Authors’ responses 
Paragraphs 1 and 2: Prevailing wind. 

It would be interesting to explore the effect of the higher take-off points of 
aphids and how this affects the flight distance of the aphids, particularly 
under New Zealand conditions. There was little easily available information in 
the literature on this, and we did not find information on flight distances of 
aphids within New Zealand orchards. 

Paragraph 3: Confounding of sampling schemes and number of 
trees.  

Given the resources available, we chose to limit the number of sampling 
schemes to the current MaffOpps scheme and those used by other 
researchers in this area. However, for a future project, the suggestion to 
explore combinations with a range of schemes (random, systematic, 
systematic with groups of trees, and stratified) with a range of number of 
trees sampled is excellent and one we would wish to pursue.  

Paragraph 4: Edge effects. 

Again, this is a topic worth pursuing, which we had some awareness of, but 
insufficient resources to pursue thoroughly. 

Paragraph 5:  Adjusting for aggregation. 

We have adjusted the text to address this point. Our understanding of the 
literature and the equations is that aggregation in the field can lead to a 
reduction in power (p3), and biased estimates of the level of infection, if the 
sample size is determined assuming no aggregation, and the sample is not 
chosen in a truly random way. Logic suggests that if there is aggregation and 
a simple random sample is taken (i.e., individual trees, completely randomly 
chosen), then the power of a sample of a given size to detect a given level of 
infection should not be affected by aggregation, since each tree is equally 
likely to be included in the sample. However, as now stated in the text, in 
practice, it is very difficult to take random sample in the field that is chosen 
completely independently of the spatial location of trees. Thus, in practice, 
the power of the sample will inevitably also be affected by any aggregation of 
disease within the orchard. The equation for sample sizes derived for the 
beta-binomial is an approximation: thus, estimates for reduction in power p3) 
are also approximate. 

Paragraph 6: Cost of sampling trees. 

We agree that the sampling time for a random sample would be greater than 
that for a systematic sample. However, we have no data to estimate how 
much less time would be needed. 

Paragraph 7: Grouped testing. 

We were aware that this is an area that requires more work. Each testing 
laboratory will need to determine the extent of pooling of leaf samples that 
will allow reliable detection of PPV infection.  Since PPV in particular can 
occur “systemically” in only one quadrat or scaffold branch of an infected 
tree, appropriate sampling of a tree will involve taking at least eight leaves – 
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so at the most (following the work by Hughes et al. 2002) then two trees 
could be pooled.  Use of IC-PCR may actually be a more efficient method for 
testing for infected trees than ELISA since it is likely to allow a greater 
amount of pooling because of its increased sensitivity. 

Paragraph 8: Single trees. 

This point is true, and was recognised before the simulation was done. 
However, we included single trees to allow direct comparison of this extreme 
case with greater levels of infection, using the same methods to summaries 
the single tree case and all other level of infection. 

Details 

b) This change has been made. 

c) This was an error and has been corrected. 

d) The distribution of numbers of trees generated per start tree is arbitrary, 
and was chosen to be fairly simple, but reasonably consistent with the data 
was had available, in the absence of more detailed information. 

e) The 95% percentile was indeed outside the axis range: the axis ranges 
were chosen so as to allow the major part of the data to be easily visible. We 
have extended the y-axes in this figure to address this point.  

 


